Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Water Res ; 212: 118070, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1621092

ABSTRACT

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. 24-hour composite wastewater samples were collected from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and SARS-CoV-2 RNA concentrations were measured using RT-qPCR. The relationship between wastewater copy numbers of SARS-CoV-2 gene fragments and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater copy numbers of SARS-CoV-2 gene fragments and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. The WC ratio increases after key events, providing insight into the balance between disease spread and public health response. Time lag and transfer function analysis showed that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity, which allows for more timely case detection and reporting. These three metrics could help further integrate wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.


Subject(s)
COVID-19 , Pandemics , Benchmarking , Humans , RNA, Viral , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
2.
Cell ; 184(26): 6229-6242.e18, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1520753

ABSTRACT

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.


Subject(s)
COVID-19/immunology , COVID-19/transmission , Immune Evasion , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/virology , Computer Simulation , Humans , Immunity , Models, Biological , Reinfection , Vaccination
3.
Sci Total Environ ; 805: 150121, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1386609

ABSTRACT

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we quantify the SARS-CoV-2 concentration and track its dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. SARS-CoV-2 RNA concentrations in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral load as a convolution of back-dated new clinical cases with the average population-level viral shedding function. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. This finding suggests that SARS-CoV-2 concentrations in wastewater may be primarily driven by viral shedding early in infection. This work shows that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and infer early viral shedding dynamics for newly infected individuals, which are difficult to capture in clinical investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Virus Shedding , Wastewater
4.
Cell Host Microbe ; 29(7): 1048-1051, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1309196

ABSTRACT

If enough individuals in a population are immune to a pathogen, it cannot cause an outbreak. Deliberately seeking such herd immunity through infection during a potentially lethal pandemic is contrary to all principles of public health, given the potential for uncontrolled outbreaks and risks to vulnerable populations.


Subject(s)
COVID-19/immunology , Immunity, Herd , Pandemics , COVID-19/transmission , COVID-19 Vaccines , Disease Outbreaks , Humans , Public Health , SARS-CoV-2 , Vaccination
5.
Water Res ; 202: 117400, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1294290

ABSTRACT

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.


Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks , Humans , RNA, Viral , Wastewater
6.
Eur J Epidemiol ; 36(4): 429-439, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1195176

ABSTRACT

Nonpharmaceutical interventions, such as contact tracing and quarantine, have been the primary means of controlling the spread of SARS-CoV-2; however, it remains uncertain which interventions are most effective at reducing transmission at the population level. Using serial interval data from before and after the rollout of nonpharmaceutical interventions in China, we estimate that the relative frequency of presymptomatic transmission increased from 34% before the rollout to 71% afterward. The shift toward earlier transmission indicates a disproportionate reduction in transmission post-symptom onset. We estimate that, following the rollout of nonpharmaceutical interventions, transmission post-symptom onset was reduced by 82% whereas presymptomatic transmission decreased by only 16%. The observation that only one-third of transmission was presymptomatic at baseline, combined with the finding that NPIs reduced presymptomatic transmission by less than 20%, suggests that the overall impact of NPIs was driven in large part by reductions in transmission following symptom onset. This implies that interventions which limit opportunities for transmission in the later stages of infection, such as contact tracing and isolation, are particularly important for control of SARS-CoV-2. Interventions which specifically reduce opportunities for presymptomatic transmission, such as quarantine of asymptomatic contacts, are likely to have smaller, but non-negligible, effects on overall transmission.


Subject(s)
COVID-19/physiopathology , COVID-19/transmission , SARS-CoV-2 , China , Contact Tracing , Databases, Factual , Humans , Incidence , Models, Statistical , Quarantine , SARS-CoV-2/pathogenicity
8.
Nat Med ; 26(4): 506-510, 2020 04.
Article in English | MEDLINE | ID: covidwho-52238

ABSTRACT

As of 29 February 2020 there were 79,394 confirmed cases and 2,838 deaths from COVID-19 in mainland China. Of these, 48,557 cases and 2,169 deaths occurred in the epicenter, Wuhan. A key public health priority during the emergence of a novel pathogen is estimating clinical severity, which requires properly adjusting for the case ascertainment rate and the delay between symptoms onset and death. Using public and published information, we estimate that the overall symptomatic case fatality risk (the probability of dying after developing symptoms) of COVID-19 in Wuhan was 1.4% (0.9-2.1%), which is substantially lower than both the corresponding crude or naïve confirmed case fatality risk (2,169/48,557 = 4.5%) and the approximator1 of deaths/deaths + recoveries (2,169/2,169 + 17,572 = 11%) as of 29 February 2020. Compared to those aged 30-59 years, those aged below 30 and above 59 years were 0.6 (0.3-1.1) and 5.1 (4.2-6.1) times more likely to die after developing symptoms. The risk of symptomatic infection increased with age (for example, at ~4% per year among adults aged 30-60 years).


Subject(s)
Age Factors , Coronavirus Infections , Models, Statistical , Pandemics , Pneumonia, Viral , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Humans , Infant , Male , Middle Aged , Mortality , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Prognosis , Real-Time Polymerase Chain Reaction , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL